Using Conditional Mutual Information to Approximate Causality for Multivariate Physiological Time Series
نویسندگان
چکیده
Causality analytic techniques based on conditional mutual information are described. Causality analysis may be used to infer linear and nonlinear causal relations between selected brain regions, and can account for identified non-causal confounds. The analysis results in a directed graph whose nodes are brain regions, and whose edges represent information flow. This causal information measure in principle should handle arbitrary nonlinear interactions without presupposing particular models of interaction. Keywords—Functional connectivity, causality, multivariate time series analysis
منابع مشابه
Causality detection based on information-theoretic approaches in time series analysis
Synchronization, a basic nonlinear phenomenon, is widely observed in diverse complex systems studied in physical, biological and other natural sciences, as well as in social sciences, economy and finance. While studying such complex systems, it is important not only to detect synchronized states, but also to identify causal relationships (i.e. who drives whom) between concerned (sub) systems. T...
متن کاملSimulation Study of Direct Causality Measures in Multivariate Time Series
Measures of the direction and strength of the interdependence among time series from multivariate systems are evaluated based on their statistical significance and discrimination ability. The best-known measures estimating direct causal effects, both linear and nonlinear, are considered, i.e., conditional Granger causality index (CGCI), partial Granger causality index (PGCI), partial directed c...
متن کاملDirect coupling information measure from non-uniform embedding
A measure to estimate the direct and directional coupling in multivariate time series is proposed. The measure is an extension of a recently published measure of conditional mutual information from mixed embedding (MIME) for bivariate time series. In the proposed measure of partial MIME (PMIME), the embedding is on all observed variables and it is optimized in explaining the response variable. ...
متن کاملQuantifying Causal Coupling Strength: A Lag-specific Measure For Multivariate Time Series Related To Transfer Entropy
While it is an important problem to identify the existence of causal associations between two components of a multivariate time series, a topic addressed in Runge, Heitzig, Petoukhov, and Kurths [Phys. Rev. Lett. 108, 258701 (2012)], it is even more important to assess the strength of their association in a meaningful way. In the present article we focus on the problem of defining a meaningful ...
متن کاملInformation Theoretic Derivations for Causality Detection: Application to Human Gait
As a causality criterion we propose the conditional relative entropy. The relationship with information theoretic functionals mutual information and entropy is established. The conditional relative entropy criterion is compared with 3 well-established techniques for causality detection: ‘Sims’, ‘GewekeMeese-Dent’ and ‘Granger’. It is shown that the conditional relative entropy, as opposed to th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005